Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-07
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • 2024-05
  • br Introduction Integrating smart technologies

    2018-11-02


    Introduction Integrating smart technologies into existing houses generally requires major renovations, which may be as time consuming and/or costly as building a new house. Given that 7-Nitroindazole a building may last for decades, the requirements to allow incremental integrations of smart technologies into buildings outweigh those of new smart houses. The open building principles provide a systematic approach for building constructions (Habraken, 1972). Two key concepts of the open building principles are supports and infills. The supports comprise all permanent, shared building services. An infill system is a carefully pre-packaged, integrated set of products and a custom prefabricated off-site for a given dwelling. By decomposing the construction of a building into various components that can be assembled through building products, the process enables incremental modifications and improvements of existing buildings.
    Supports and infills Habraken (1972) has introduced the open building principles which divide a building into two levels: supports and infills. This division provides a systematic way of linking building elements and enables variations or customization according to residents׳ needs. The two levels are also decision-making levels, where residents can decide on the infills needed and the placements of these infills. To realize the open building policies, Habraken and Van Randen have developed the Matura infill system (Kendall and Teicher, 2000; Kendall, 1996). The Matura infill system consists of two elements: the matrix tile and the baseboard profile. The matrix tile system is based on a 10cm×20cm grid that accounts for the positioning of each component and its relationship to other elements. The baseboard profile is a track component that serves as the basis for interior partitions. These components provide design adaptability, fast on-site installation, and future changeability. The curtain–wall construction of a building facade is one of the first innovations that allowed wall panels, which are infill elements, to be manufactured separately from the building structural framework, which is a support system. For example, the Blinkenlights project in Berlin, the BIX facade of Kunsthaus of Graz, and SPOTS in Berlin׳s Potsdamer Platz (Hall, 2006) are pioneering works of integrating smart technologies into the infill elements, i.e., curtain wall panels. To facilitate such kind of infill elements, the support system provides not only structural backing but also power supply and information communication. Furthermore, a building may contain various types of smart infill elements, as shown in previous developments (Chien, 2009), and the support system should provide flexibility to allow various types of infills.
    System design Integrating smart technologies into the living environment has been a topic of research since the late 1990s. Various projects such as the neural network house (Mozer, 1998), aware home (Kidd et al., 1999), and Easy Living (Shafer et al., 1998) have constructed prototypes or demonstrative houses. To operate these houses, a huge budget for maintenance and a knowledge on smart technologies are needed. Given Linkage group smart technologies are becoming affordable for the general public, architects and interior designers are receiving frequent requests from clients to integrate smart technologies, such as smart indoor environmental or lighting controls, when remodeling houses. We aim to develop an infill system that may assist in designing and deploying smart technologies for the clients of architects and interior designers.
    Prototype and evaluation We constructed a functional prototype to demonstrate the feasibility of our proposed support system and some possibilities of the smart infill elements. The prototype was a partitioning wall that was 210cm high and 120cm wide (Figure 8). To demonstrate the electricity and information communication supports, we tested an information display infill that showed the occupancy status in the environment. To demonstrate the support of the kinetic infill elements, an adjustable (protruding) lighting infill was tested. In addition, to demonstrate the support of interaction between the occupants and the infill elements, an adjustable lighting infill was designed for the light intensity level to adjust according to the ambient lighting conditions.